Problem 1.1

Solve the separable equations:
(a) $y^{\prime}=e^{x+y}$;
(b) $y^{\prime}=x y+x+y+1$

Solution

Part (a)

This differential equation can be solved by separation of variables because the right-hand side can be factored.

$$
\begin{aligned}
y^{\prime} & =e^{x+y} \\
\frac{d y}{d x} & =e^{x} e^{y} \\
\frac{d y}{e^{y}} & =e^{x} d x \\
\int e^{-y} d y & =\int e^{x} d x \\
-e^{-y} & =e^{x}+C \\
e^{-y} & =-e^{x}-C \\
-y & =\ln \left(-e^{x}-C\right)
\end{aligned}
$$

Therefore,

$$
y(x)=\ln \left(-\frac{1}{e^{x}+C}\right) .
$$

Part (b)

This differential equation can be solved by separation of variables as well because the right-hand side can be factored.

$$
\begin{aligned}
y^{\prime} & =x y+x+y+1 \\
\frac{d y}{d x} & =y(x+1)+x+1 \\
\frac{d y}{d x} & =(y+1)(x+1) \\
\frac{d y}{y+1} & =(x+1) d x \\
\int \frac{d y}{y+1} & =\int(x+1) d x \\
\ln |y+1| & =\frac{1}{2} x^{2}+x+C \\
y+1 & = \pm e^{\frac{1}{2} x^{2}+x+C} \\
y+1 & =A e^{\frac{1}{2} x(x+2)}
\end{aligned}
$$

Therefore,

$$
y(x)=A e^{\frac{1}{2} x(x+2)}-1 .
$$

